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Introduction

• Many economic interactions can be described as contests:

• promotions;

• elections;

• university entrance exams;

• innovation competitions;

• sporting events.

• All of these contests are designed.

• How then should contests be optimally designed?



Introduction

• The usual approach:

• pick a contest family (e.g. Tullock, Lazear-Rosen, All-Pay),

• then optimize (usually over prize vectors).

• Intuition we get often does not transfer across families:

• Tullock Ð→ winner-take-all is optimal (Clark and Riis, 1998;
Schweinzer and Segev, 2012);

• All-Pay Ð→ n − 1 equal prizes are optimal (Fang, Noe and
Strack, 2020).

• Should we choose Tullock, All-Pay, or some other contest?



This paper

• Provides a general framework where the designer can
choose

• any prize profile and
• any prize allocation rule (i.e., contest success function),

including all standard contests as special cases.

• Focuses on the maximization of total effort net of prizes.

• New results:
• risk-averse agents,
• imperfect observability of effort.

• Extensions to heterogeneous agents, costly entry, and
risk-loving agents.



Model



Environment

• A principal organizes a contest among n ≥ 2 agents.

• In a contest, each agent

• chooses an effort ei ≥ 0, and

• obtains a monetary transfer ti ≥ 0.

• The payoff of agent i is

Πi(ei, ti) = u(ti) − c(ei).

• u′ > 0, u′′ ≤ 0, and u(0) = 0;

• c′ > 0, c′′ > 0, c(0) = c′(0) = 0, and lime→∞ c′(e) =∞.



Environment

• Let e = (e1, ...,en), E = Rn+, and t = (t1, ..., tn).

• The payoff of the principal is

ΠP(e, t) =
n
∑
i=1
ei −

n
∑
i=1
ti.

• Our results continue to hold with any production function
g ∶ E→ R+ that is symmetric, increasing and concave.



Environment

• After agents have chosen e, signal s ∈ S is drawn according
to some probability measure ηe ∈∆S.

• (S, η) is the observational structure of the model.
• The principal observes s and not e.

• Examples
• Perfect observability: S = E and si = ei.
• Additive noise: S = R and si = ei + ϵi.
• Correlated observational errors (Green and Stokey, 1983;
Nalebuff and Stiglitz, 1983).

• Various aggregate measures, e.g., S = R and s = e1 − e2.



Contests

• A contest (y, π) is defined by

• a prize profile y = (y1, . . . , yn), w.l.o.g. y1 ≥ ... ≥ yn, and

• a contest success function (CSF) π ∶ S→∆T(y),

where T(y) is the set of all permutations of y.

• Given a fixed observational structure (S, η) and a contest
(y, π), the probability that agent i wins the prize yk is

pki (e).



Examples

• Perfect observability, all-pay contest:

p1i (e) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if ei > ej,
1/2 if ei = ej,
0 if ei < ej.

• Perfect observability, Tullock contest with impact function
f:

p1i (e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(ei)
f(ei)+f(ej)

if max{ei,ej} > 0,

1/2 otherwise.

• Imperfect observability with si = ei + ϵi, ϵi i.i.d. Gumbel with
mean zero, and all-pay contest then for some β > 1:

p1i (e) =
exp(ei/β)

exp(ei/β) + exp(ej/β)



Principal’s objective

• Let (possibly random) efforts be σi ∈∆R+.

• The principal solves

max
σ,(y,π)

Eσ [
n
∑
i=1
ei] −

n
∑
i=1
yi

such that (y, π) implements σ.



Optimal Contest



Optimal prize vector and effort

• From Letina, Liu, Netzer (2020) we know that with perfect
observability the optimal

• prize vector y∗ is:

y∗ = ( x∗

n − 1
, . . . ,

x∗

n − 1
,0) ,

• effort e∗ is:

c(e∗) = n − 1
n

u( x∗

n − 1
) ,

• where total sum x∗ is:

u′ ( x∗

n − 1
) = c′ (c−1 (n − 1

n
u( x∗

n − 1
))) .



Optimal contest

• Denote the probability that agent i wins one of the top
n − 1 prizes with p−ni (e) = 1 − p

n
i (e).

Proposition 1
Fix an arbitrary observational structure (S, η). A contest (y, π)
is optimal if the prize profile is y = y∗ and the CSF satisfies, for
each i ∈ I,

(i) p−ni (e
∗,e∗−i) =

n−1
n , and

(ii) p−ni (ei,e
∗
−i) ≤

c(ei)
u(x∗/(n−1)) , ∀ei ≠ e

∗.
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∗
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standard all-pay

all-pay with cap at e∗

Figure 1: n = 2, u(t) =
√
t and c(e) = e2.



Perfect Observability of Effort



Nested Tullock contests

• Nested Tullock was introduced by Clark and Riis (1996).

• With n agents and a single positive prize, the probability
that i wins the prize is:

pi(e) =
f(ei)
∑nj=1 f(ej)

. (1)

• With multiple positive prizes, (1) is applied in a nested
fashion by eliminating the winners in each round
sequentially.



Nested Tullock contests

Proposition 2
Suppose efforts are perfectly observed. Then, the nested
Tullock contest is optimal if the prize profile is y = y∗ and the
CSF is a nested Tullock with

f(ei) = c(ei)r
∗(n) and r∗(n) = n − 1

Hn − 1
,

where Hn = ∑nk=1 1/k is the n-th harmonic number.



Optimal Tullock: effort and competitiveness

• With perfect observability and risk-averse agents, optimal
contest achieves second-best

e∗ < eFB

but efficiency loss vanishes as n→ +∞.

• The precision of the CSF, r∗, measures competitiveness:

• r∗(2) = 2, r∗(n) ↑ in n, and limn→∞ r∗(n) =∞

• r∗(n) is such that any increase in the competitiveness of
the contest would destroy the pure strategy equilibrium.



Optimal Tullock: results from the literature

• Take a winner-take-all all-pay contest.
• Fang, Noe and Strack (2020) show that “turning down the
heat” by dividing the prize increases the total expected
effort.

• They conclude that the optimal all-pay contest has n − 1
equal prizes.

• We show that it is beneficial to turn down the heat even
further by making the CSF less precise.

• Schweinzer and Segev (2012) show that turning up the
heat (by making the prize profile more top-heavy) is
beneficial as long as a pure strategy equilibrium exists.

• The optimal “competitiveness” of the contest is exactly at
the point where the pure strategy equilibrium appears.



Imperfect Observability of Effort



Imperfect observability of effort

• (S, η) features symmetric additive noise if
• si = ei + εi,
• εi are i.i.d.,
• from cdf F and support contained in [ε, ε].

Proposition 3
Suppose efforts are observed with symmetric additive noise.
If

F−(ε + e∗ − e) ≥ 1 − c(e)
c(e∗)

, ∀e ∈ [0,e∗],

then a contest with prize profile y = y∗ and an all-pay
allocation rule with a cap at s̄ = e∗ + ε is optimal.

• Examples in the paper for multiplicative noise and
observation of e1 − e2.



Imperfect observability of effort

s̄ − ε e∗

n − 1
n

1

ei

p−ni (ei,e
∗
−i)

min{ c(ei)
u(x∗/(n−1)) , 1}

optimal all-pay with cap at s̄

Figure 2: εi ∼ U[−0.1,0.1], n = 2, u(t) =
√
t and c(e) = e2.



Extensions



Extensions

• Heterogeneous contestants
• n = 2: biased Tullock is optimal for arbitrary cost functions.
• n > 2: n − 1 equal positive prizes and one zero prize are
optimal if heterogeneity is not too large.

• Costly entry, with private cost
• n − 1 equal positive prizes, with last prize potentially
positive.

• Risk-loving agents
• WTA is optimal,
• otherwise, Prop. 1 carries over.



Concluding remarks



Contributions

• We provide a framework that enables us to study contest
design, without being restricted to a single class of
contests.

• We provide sufficient conditions for a contest to be
optimal for an arbitrary observational structure (S, η).

• With perfect observability, we show the optimum can be
achieved by an appropriately designed Tullock contest.

• With imperfect observability and symmetric additive noise,
we provide sufficient conditions on the noise distribution
and describe an optimal contest if those conditions are
satisfied.



Open questions

• We focus on optimal design that maximizes aggregate
effort. But there are other objectives that the principal
may have. The immediate one is maximizing highest effort.

• We focus on observational structures for which the
second-best is implementable. How does the optimal
contest look like when this is not the case? What is the
third-best?

• Conjecture: n − 1 positive equal prizes is no longer optimal,
prizes are more concentrated at the top.
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